Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Có bao nhiêu số nguyên của tham số m để phương trình \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\)
có nghiệm
Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
Có bao nhiêu giá trị nguyên của tham số \(m\in[-2020;2020]\) để bất phương trình \(\left|4x-2m-\dfrac{1}{2}\right|>-x^2+2x+\dfrac{1}{2}-m\) luôn đúng với mọi \(x\).
Tìm m để bất phương trình \(\sqrt{x^2+4x+3m+1}=x+3\) (m là tham số thực) có nghiệm
Tìm m để bất phương trình sau có nghiệm :
\(\sqrt{x-1}+m\sqrt{x+1}+4\sqrt[4]{x^2-1}\)≥ 0
Tìm m để bất phương trình sau có nghiệm : \(\sqrt{x-1}+m\sqrt{x+1}4\sqrt[4]{x^2-1}\) ≥ 0
tìm các giá trị m để hệ bất phương trình sau có nghiệm : x2+2x-15<0 và (m +1)x>=3
tìm các giá trị m để hệ bất phương trình sau có nghiệm : x2+2x-15<0 và (m +1)x>=3