Phép nhân và phép chia các đa thức

MH

Tính:

\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

LH
3 tháng 7 2021 lúc 22:21

\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2}+\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2+\sqrt{3}}\right)}\)

\(=\dfrac{2\sqrt{2}}{2-\left(2+\sqrt{3}\right)}=\dfrac{2\sqrt{2}}{-\sqrt{3}}=-\dfrac{2\sqrt{6}}{3}\)

Bình luận (0)
NT
3 tháng 7 2021 lúc 22:30

Ta có: \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{-\sqrt{2}-\sqrt{2+\sqrt{3}}}{\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{6}}\)

\(=\dfrac{-2}{\sqrt{6}}=\dfrac{-2\sqrt{6}}{6}=\dfrac{-\sqrt{6}}{3}\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
NC
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết