Chương I - Căn bậc hai. Căn bậc ba

PD

Tính

\(a.\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(b.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)

\(c.\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\left(b>0;a\ne-\sqrt{b}\right)\)

NL
13 tháng 8 2021 lúc 15:33

\(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

b. 

\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)

\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)

\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}=2\sqrt{10}\)

c.

\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}=\dfrac{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}{\sqrt{b}.\sqrt{b}}=\dfrac{a^2-b}{b}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
TN
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
CC
Xem chi tiết
BN
Xem chi tiết
AQ
Xem chi tiết