\(-\dfrac{1}{6}A=\left(-\dfrac{1}{6}\right)^1+\left(-\dfrac{1}{6}\right)^2+...+\left(-\dfrac{1}{6}\right)^{2018}\)
\(\Leftrightarrow-\dfrac{7}{6}A=\left(-\dfrac{1}{6}\right)^{2018}-\left(-\dfrac{1}{6}\right)^0=\dfrac{1}{6^{2018}}-1=\dfrac{1-6^{2018}}{6^{2018}}\)
\(\Leftrightarrow A=\dfrac{6^{2018}-1}{6^{2018}}:\dfrac{7}{6}=\dfrac{6^{2018}-1}{7\cdot6^{2017}}\)