A = \(1+2+2^2+2^3+...+2^{99}\)
2A = 2 . ( \(1+2+2^2+2^3+...+2^{99}\))
2A = \(2+2^2+2^3+2^4+...+2^{100}\)
=> 2A - A = ( \(2+2^2+2^3+...+2^{100}\)) - ( \(1+2+2^2+...+2^{99}\))
=> A = \(2+2^2+2^3+...+2^{100}-1+2+2^2+...+2^{99}\)
=> A = \(2^{100}-1\)
A= 1+2+22+23+24+...+299
2A=2+22+23+24+25+...+2100
2A-A=(2+22+23+24+25+...+2100)-(1+2+22+23+24+...+299)
2A-A=2+22+23+24+25+...+2100-1-2-22-23-24-...-299
A=2100-1