Chương I : Ôn tập và bổ túc về số tự nhiên

TD

a) Tính tổng A=6/5.8+22/8.19+24/19.31+140/31.101+198/101.200 b) Chứng minh : 1/2^2+1/4^2+1/6^2+...+1/100^2

NH
3 tháng 6 2021 lúc 12:49

a/ \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{198}{101.200}\)

\(=2\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+...+\dfrac{99}{101.200}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+....+\dfrac{1}{101}-\dfrac{1}{200}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\)

\(=\dfrac{39}{100}\)

b/ \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)

Ta có :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...........

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)

Bình luận (1)

Giải:

a) \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{140}{31.101}+\dfrac{198}{101.200}\) 

\(A=2.\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+\dfrac{70}{31.101}+\dfrac{99}{101.200}\right)\) 

\(A=2.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{101}+\dfrac{1}{101}-\dfrac{1}{200}\right)\) 

\(A=2.\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\) 

\(A=2.\dfrac{39}{200}\) 

\(A=\dfrac{39}{100}\) 

b) \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\) 

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\) 

\(...\) 

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\) 

\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\) 

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\) 

\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}...+\dfrac{1}{99}+\dfrac{1}{100}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\) 

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{99}+\dfrac{1}{100}\) 

Bạn tự lm theo đề bài của bạn nhé vì đề bài chỉ thế này thôi!

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
BT
Xem chi tiết
NL
Xem chi tiết
LT
Xem chi tiết
TK
Xem chi tiết
LK
Xem chi tiết
LT
Xem chi tiết