\(I=\frac{1}{2}\int\limits_0^1\left(x-2\right)d\left(e^{2x}\right)=\frac{1}{2}\left[\left(x-2\right)e^{2x}|^1_0-\int\limits^1_0e^{2x}d\left(x-2\right)\right]=\frac{1}{2}\left[-e^2+2-\int\limits^1_0e^{2x}dx\right]\)
\(=\frac{1}{2}\left[-e^2+2-\frac{1}{2}e^{2x}|^1_{ }\right]=\frac{1}{2}\left[-e^2+2-\frac{1}{2}\left(e^2-1\right)\right]\)
\(=-\frac{3}{4}e^2+\frac{5}{4}\)