Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

H24

Tính tích phân \(I=\int\limits^{\dfrac{\Pi}{2}}_0\left(2cos^2\dfrac{x}{2}+xcosx\right)e^{sinx}dx\)

Giúp mình với ạ♥

NL
24 tháng 4 2022 lúc 15:08

\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right).cosx.e^{sinx}dx=I_1+I_2\)

Xét \(I_2\), đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)

\(\Rightarrow I_2=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-I_1\)

\(\Rightarrow I=I_1+\left(\dfrac{\pi}{2}+1\right)e-1-I_1=\left(\dfrac{\pi}{2}+1\right)e-1\)

Bình luận (6)

Các câu hỏi tương tự
LH
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết
KT
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
HK
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết