Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

TC

tính nguyên hàm của hàm số:

\(I=\int\frac{1+sinx}{1+cosx}dx\)

NL
12 tháng 2 2020 lúc 1:18

\(I=\int\frac{dx}{1+cosx}+\int\frac{sinxdx}{1+cosx}=\int\frac{d\left(\frac{x}{2}\right)}{cos^2\frac{x}{2}}-\int\frac{d\left(1+cosx\right)}{1+cosx}\)

\(=tan\frac{x}{2}-ln\left(1+cosx\right)+C\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TD
Xem chi tiết
PD
Xem chi tiết
NA
Xem chi tiết
LK
Xem chi tiết
NV
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết