Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

H24

Tìm nguyên hàm của hàm số : \(\int\dfrac{x\ln\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}dx\)

AH
19 tháng 1 2021 lúc 1:06

Lời giải:

Đặt \(u=\ln (x+\sqrt{x^2+1}); dv=\frac{1}{\sqrt{x^2+1}}dx\)

\(\Rightarrow du=\frac{dx}{\sqrt{x^2+1}}; v=\int \frac{x}{\sqrt{x^2+1}}dx=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\sqrt{x^2+1}\)

\(\Rightarrow \int \frac{x\ln (x+\sqrt{x^2+1})}{\sqrt{x^2+1}}dx=\int udv=uv-vdu=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-\int dx\)

\(=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-x+C\)

 

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
MB
Xem chi tiết
LT
Xem chi tiết
PD
Xem chi tiết