Chương 4: GIỚI HẠN

LM

Tính giới hạn: \(A=\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+2017\right)\sqrt[5]{1-5x}-2017}{x}\)

NL
1 tháng 3 2021 lúc 19:11

\(A=\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+2017\right)\left(\sqrt[5]{1-5x}-1\right)+x^2}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{5x\left(x^2+2017\right)}{\sqrt[5]{\left(1-5x\right)^4}+\sqrt[5]{\left(1-5x\right)^3}+\sqrt[5]{\left(1-5x\right)^2}+\sqrt[5]{1-5x}+1}+x^2}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{5\left(x^2+2017\right)}{\sqrt[5]{\left(1-5x\right)^4}+\sqrt[5]{\left(1-5x\right)^3}+\sqrt[5]{\left(1-5x\right)^2}+\sqrt[5]{1-5x}+1}+x\right)\)

\(=-2017\)

Bình luận (0)
TT
1 tháng 3 2021 lúc 19:20

dễ thấy hàm số trên có dạng 0/0

áp dụng quy tắc l'Hôpital 

\(A=_{\lim\limits_{x\rightarrow0}\dfrac{\left(x^2+2017\right)\sqrt[5]{1-5x}-2017}{x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\left(x^2+2017\right)\sqrt[5]{1-5x}-2017\right)'}{\left(x\right)'}}\)

\(A=\lim\limits_{x\rightarrow0}\dfrac{-x^2-2017}{\sqrt[5]{\left(1-5x\right)^4}}+2x\sqrt[5]{1-5x}=\dfrac{-2017}{1}=-2017\)

Bình luận (0)