Ta có: \(P=\frac{y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}}{\sqrt{xy}+1}\)
\(=\frac{\left(y\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+x\sqrt{y}\right)}{\sqrt{xy}+1}\)
\(=\frac{\sqrt{y}\left(\sqrt{xy}+1\right)+\sqrt{x}\left(1+\sqrt{xy}\right)}{\sqrt{xy}+1}\)
\(=\frac{\left(\sqrt{xy}+1\right)\left(\sqrt{y}+\sqrt{x}\right)}{\sqrt{xy}+1}\)
\(=\sqrt{x}+\sqrt{y}\)