Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Thầy phynit giúp em :v Cả đề còn mỗi câu này không nghĩ ra :
Cho \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Em nghĩ ra \(\left(ab+bc+ca\right)\left(a^2b^2+b^2c^2+c^2a^2-ab^2c-abc^2-a^2bc\right)=0\)thì tịt
Cho a,b là các số nguyên dương thoả mãn ab=1. Tìm GTNN của biểu thức:
\(F=\left(2a+2b-a\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
=))) Cho a,b là các số dương thoả mãn \(ab=1\) . Tìm GTNN của biểu thức:
\(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Đề trước ghi bị nhầm =))
Thực hiện phép tính :
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Cho \(a,b\in N\) và \(\left(a-b\right)\left(2a+2b+1\right)=b\)
a) Chứng minh \(2a+2b+1\) là số chính phương
b) Chứng minh phân số \(\frac{a-b}{2a+2b+1}\) tối giản
cho biểu thức : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\) với a>0 ; b>0 ; a khác b
a. CM : P=1/ab
b. giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\) . Tìm min P
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
Nếu \(\frac{1}{a}-\frac{1}{b}=1\) (a,b khác 0 và 2a+3ab-2b khác 0)
Tính Q=\(\frac{a-2ab-b}{2a+3ab-2b}\)
cho biểu thức \(A=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}+\frac{2a}{a^2+1-a^3-a}\right)-1\)
a. Rút gọn A
b. Tìm a để A<2