Ôn tập toán 8

PA

cho biểu thức \(A=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}+\frac{2a}{a^2+1-a^3-a}\right)-1\)

a. Rút gọn A

b. Tìm a để A<2

HN
11 tháng 8 2016 lúc 17:56

Điều kiện : \(a\ne1\)

\(A=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}+\frac{2a}{a^2+1-a^3-a}\right)-1\)

\(=\frac{a^2+a+1}{a^2+1}:\left(\frac{-a^2-1}{\left(1+a^2\right)\left(1-a\right)}+\frac{2a}{\left(1+a^2\right)\left(1-a\right)}\right)-1\)

\(=\frac{a^2+a+1}{a^2+1}.\frac{\left(a-1\right)\left(1+a^2\right)}{\left(a-1\right)^2}-1=\frac{a^2+a+1}{a-1}-1=\frac{a^2+2}{a-1}\)

b) A < 2 \(\Rightarrow\frac{a^2+2}{a-1}< 2\Leftrightarrow\frac{\left(a^2-2a+1\right)+2\left(a-1\right)+3}{a-1}< 2\)

\(\Leftrightarrow a-1+2+\frac{3}{a-1}< 2\Leftrightarrow a-1+\frac{3}{a-1}< 0\)

Đặt t = a-1 , xét : 

Nếu t > 0 thì \(t+\frac{3}{t}< 0\Leftrightarrow t^2+3< 0\) không thỏa mãn vì \(t^2+3>3>0\)

Nếu t < 0 thì \(t+\frac{3}{t}< 0\Leftrightarrow t^2+3>0\) thỏa mãn

Vậy a - 1 < 0 => a < 1 thỏa mãn đề bài

 

 

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
TB
Xem chi tiết
TB
Xem chi tiết
TK
Xem chi tiết
MA
Xem chi tiết
NP
Xem chi tiết
LD
Xem chi tiết
PA
Xem chi tiết
NJ
Xem chi tiết