Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh : \(\frac{2x^2+3ab+3b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho \(a,b\in N\) và \(\left(a-b\right)\left(2a+2b+1\right)=b\)
a) Chứng minh \(2a+2b+1\) là số chính phương
b) Chứng minh phân số \(\frac{a-b}{2a+2b+1}\) tối giản
Thầy phynit giúp em :v Cả đề còn mỗi câu này không nghĩ ra :
Cho \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Em nghĩ ra \(\left(ab+bc+ca\right)\left(a^2b^2+b^2c^2+c^2a^2-ab^2c-abc^2-a^2bc\right)=0\)thì tịt
CHO a,b,c > 0 thõa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2b^2+3}\le\frac{1}{2}\)
Cho a,b,c là độ dài của 3 cạnh của 1 tam giác
Chứng minh : \(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4>0\)
Tính đi nào!!!
1)\(\frac{\left(a-b\right)^2+4ab}{a+b}-\frac{a^2b-b^2a}{ab}\)
2)
Cho a+b+c=1, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) abc khác 0.Tính A = a2 + b2 + c2
Cho a,b là các số nguyên dương thoả mãn ab=1. Tìm GTNN của biểu thức:
\(F=\left(2a+2b-a\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
2. Cho a, b là các số nguyên dương thỏa mãn \(\frac{a^3+b^3}{2a^2b}\)là một số nguyên. Tính giá trị của biểu thức \(\frac{a^3+b^3}{a^2b}\)