Áp dụng công thức \(\left(\sqrt[n]{u}\right)'=\frac{u'}{n\sqrt[n]{u^{n-1}}}\) :
\(y'=\frac{1+\frac{1}{2\sqrt{x}}}{3\sqrt[3]{\left(x+\sqrt{x}\right)^2}}=\frac{2\sqrt{x}+1}{6\sqrt{x}\sqrt[3]{\left(x+\sqrt{x}\right)^2}}\)
\(y=\sqrt[3]{x+\sqrt{x}}\)
chia đều cho hai bên
\(\Leftrightarrow y^3=x+x^{\dfrac{1}{2}}\)
đạo hàm cấp 1{hai vế}
\(3y^2=1+\dfrac{1}{2}x^{\left(1-\dfrac{1}{2}\right)}=1+\dfrac{1}{2x^2}=\dfrac{2x^2+1}{2x^2}\)
Thay y=\(\sqrt[3]{x+\sqrt{x}}\) vào VT
\(\Leftrightarrow y'=\dfrac{\left(2x^2+1\right)}{2x^2.3.\sqrt[3]{\left(x+\sqrt{x}\right)^2}}=\dfrac{\left(2x^2+1\right)}{6.x^2.\sqrt[3]{\left(x+\sqrt{x}\right)^2}}\\ \)
Liệu có sai; --> sai ở đâu