Bài 2: Quy tắc tính đạo hàm

BT

tính đạo hàm của mỗi hàm số sau :

a) y=\(\dfrac{1}{\left(x^2-x+1\right)^5}\) ; b) y=\(x^2+x\sqrt{x}+1\) ; c) y=\(\sqrt{\dfrac{x^2+1}{x}}\)

NT
28 tháng 3 2017 lúc 7:56

a : \(y=\dfrac{1}{\left(x^2-x+1\right)^5}=\left(x^2-x+1\right)^{-5}\)

\(\Rightarrow y'=-5\left(2x-1\right)\left(x^2-x+1\right)^{-6}=\dfrac{5-10x}{\left(x^2-x+1\right)^6}\)

b: \(y=x^2+x^{\dfrac{3}{2}}+1\Rightarrow y'=2x+\dfrac{3}{2}x^{\dfrac{1}{2}}=2x+\dfrac{3\sqrt{x}}{2}\)

\(y=\sqrt{\dfrac{x^2+1}{x}}=\left(\dfrac{x^2+1}{x}\right)^{\dfrac{1}{2}}\Rightarrow y'=\dfrac{1}{2}\left(\dfrac{x^2+1}{x}\right)'\left(\dfrac{x^2+1}{x}\right)^{\dfrac{-1}{2}}=\dfrac{x^2-1}{2x^2}\times\dfrac{1}{\sqrt{\dfrac{x^2+1}{x}}}=\dfrac{x^2-1}{2x^2\sqrt{\dfrac{x^2+1}{x}}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NB
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
BT
Xem chi tiết
SK
Xem chi tiết
MA
Xem chi tiết