Bài 33. Đạo hàm cấp hai

H24

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = x{e^{2x}};\)                                  

b) \(y = \ln \left( {2x + 3} \right).\)

NT
17 tháng 8 2023 lúc 20:07

a: \(y=x\cdot e^{2x}\)

=>\(y'=\left(x\cdot e^{2x}\right)'\)

\(=x\cdot\left(e^{2x}\right)'+x'\cdot\left(e^{2x}\right)\)

\(=e^{2x}+2\cdot x\cdot e^{2x}\)

\(y''=\left(e^{2x}+2\cdot x\cdot e^{2x}\right)'\)

\(=\left(e^{2x}\right)'+\left(2\cdot x\cdot e^{2x}\right)'\)

\(=4\cdot e^{2x}+4\cdot x\cdot e^{2x}\)

b: \(y=ln\left(2x+3\right)\)

=>\(y'=\dfrac{\left(2x+3\right)'}{\left(2x+3\right)}=\dfrac{2}{2x+3}\)

=>\(y''=\left(\dfrac{2}{2x+3}\right)'=\dfrac{2\left(2x+3\right)'-2'\left(2x+3\right)}{\left(2x+3\right)^2}\)

\(=\dfrac{4}{\left(2x+3\right)^2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết