Bài 5: Phép cộng các phân thức đại số

NL

Tính các tổng sau :

a) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

b) \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.11}+...+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)

c) \(\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.22}+...+\dfrac{1}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

NT
5 tháng 6 2022 lúc 21:12

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

 

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
HD
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết
TH
Xem chi tiết
CB
Xem chi tiết
BC
Xem chi tiết
TN
Xem chi tiết
NP
Xem chi tiết