Phân thức đại số

TP

Tính các tổng sau :

a, \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

b, \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.11}+........+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)

c,\(\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.22}+....+\dfrac{1}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

NT
7 tháng 6 2022 lúc 20:34

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)

\(=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
HG
Xem chi tiết
YT
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NS
Xem chi tiết