Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N.
a) CMR: ΔABC = ΔDBC
b) CMR: ABDC là tứ giác nội tiếp
c) CMR: Ba điểm M, D, N thẳng hàng
d) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất.
1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H.
a. Cm CH//MB
b. Cm BC vuông góc với AM và MA.MC=MB2
c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O)
d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn nhất.
2.Cho đường tròn tâm O đường kính AB=2R.Từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắtđường tròn tâm O tại C và D.
a. Chứng minh HC=HD và tứ giác ODBC là hình thoi.
b. Tính số đo góc BOC.
c. Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O).Tính MC theo R.
d. Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh: HI.HD+HB.HM=R2
Cho tam giác ABC có \(\widehat{BAC}=60^o\), AC=b, AB=c(b>c). Đường kính EF của đường tròn ngoại tiếp tam giác ABC \(\perp BC\) tại M( E thuộc cung lớn BC).Gọi I và J là chân đường vuông góc hạ từ E xuống đường thẳng AB và AC.Gọi H và K là chân đường vuông góc kẻ từ F xuống các đường thẳng AB và AC.
a/ C/m các tứ giác AIEJ, CMJE nội tiếp và EA.EM=EC.EI.
b/C/m I,J,M thẳng hàng và IJ vuông góc với HK
c/ Tính độ dài BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b,c.
(Mình chỉ cần câu b và c thôi nha!) @phynit, @Akai Haruma, @tran nguyen bao quan
Cho đường tròn tâm O, đường kính AB=2R,Ax là tiếp tuyến của đường tròn tâm O tại A. Trên Ax lấy một điểm C sao cho AC > R, vẽ tiếp tuyến CM với (O),(M là tiếp điểm).Đường thảng vuông góc vỡi AB tại O cắt tia BM ở N.
a) CM tứ giác ACNO là hình chữ nhật
b) Gọi I là giao điểm của OM và CN, H là giao điểm của CM và ON, K là giao điểm của AN và OC. CHứng minh 3 điểm I,H K thẳng hàng
c) Xác định vị trí của điểm C trên Ax để K thuộc đường tròn tâm O.KHi đó tính diện tích tứ giác ACMO theo R?
Rất mong các bạn giúp đỡ, mk cần gấp lắm. Các bạn ns hướng cx đc, ko cần vẽ hình cx như trình bày dài dòng....Cảm ơn các bạn trc.
Cho tam giác ABC nội tiếp đường tròn(O;R) phân giác góc BAC cắt(O) tại M vẽ đường cao AH và bán kính AO
a, Cm AM là phân giác của góc OAH
b, Giả sử góc B >góc C . Chứng minh góc OAH =góc B - góc C
c, Cho góc BAC =60° , góc OAH =20° .Tính các góc B, C của tam giác ABC
Cho đường tròn (O;R) dây BC cố định(BC<2R) , điểm H nằm giữa B và C sao cho \(0< BH< \frac{BC}{2}\). Đường thẳng đi qua H và vuông góc với BC cắt cung lớn BC của đường tròn (O;R) tại A. Gọi E,F lần lượt là hình chiếu của B, C trên đường kính AD của đường tròn (O;R).
a, Chứng minh tứ giác AEHB nội tiếp và HE _|_ AC.
b, Gọi K và I lần lượt là tâm đường tròn ngoại tiếp các tam giác ABH và HEF . Chứng minh KI đi qua trung điểm của BC.
c, Chứng minh : HF // BD và cos \(\widehat{BAC}=\frac{OI}{R}\).
Cho tam giác ABC nội tiếp đường tròn (O;R) có BC = 2R và AB < AC. Đường thẳng xy là tiếp tuyến với đường tròn (O) tại A. Tiếp tuyến tại B và C của đường tròn (O;R) lần lượt cắt đường thẳng xy ở D và E. Gọi F là trung điểm của đoạn DE.
a) Chứng minh ADBO là tứ giác nội tiếp
b) Gọi M là giao điểm thứ hai của FC với đường tròn (O;R). Chứng minh: ∠CED = 2∠AMB
c) Tính tích MC.BF theo R.
1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\).
2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)
3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằng ta có thể tìm được 1 điểm M trên đường tròn sao cho MA1+MA2+...+MAn \(\ge n\).
4. Gỉa sử a,b,c là các số dương và với số tự nhiên n bất kì có thể lập được 1 tam giác mà độ dài các cạnh lần lượt là an,bn,cn. Chứng minh rằng 2 trong 3 số a,b,c phải bằng nhau.
5. Trên mặt bàn đặt 50 cái đồng hồ có kim giờ và kim phút. Chứng minh rằng có 1 thời điểm nào đó tổng khoảng cách từ tâm mặt bàn đến các điểm đầu của kim phút lớn hơn tổng khoảng cách từ tâm mặt bàn đến tâm của các đồng hồ.( Xem mỗi đồng hồ là 1 hình tròn vẽ trên mặt bàn).
Câu 1: Tìm n để cặp số (2;1) là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}2n+y=5\\nx+3y=14\end{matrix}\right.\)
Câu 2:Tính: \(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)
Câu 3:Tìm m và n để hệ phương trình:\(\left\{{}\begin{matrix}mx+y=3\\nx+my=-2\end{matrix}\right.\)nhận cặp số (-2;1) là nghiệm
Câu 4: Cho tam giác ABC biết độ dài cạnh AB=18cm ; AC=24cm; BC=30cm. Chứng minh BC là tiếp tuyến của đường tròn (A;14,4cm)
Câu 5:Cho tam giác ABC nhọn , đường cao AH. Vẽ các đường tròn đường kính HB, HC lần lượt cắt AB, AC tại M và N. Chứng minh rằng: AM.AB=AN.AC
Câu 6: Cho tam giác ABC, vẽ đường cao AH ( điểm H nằm giữa hai điểm B và C). Biết \(AH^2=HB.HC\). Chứng minh đường thẳng AC là tiếp tuyến của đường tròn tâm B bán kính BA.
Câu 7:Cho đường thẳng (d) y=(m-5)x+7 (m là tham số) và điểm A (2;4). Biết đường thẳng (d) song song với đường thẳng OA(với O là gốc tọa độ). Tìm giá trị m