Chương I : Số hữu tỉ. Số thực

GD

Tính \(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3-....-\left(\frac{1}{2}\right)^{10}\)

TL
29 tháng 10 2017 lúc 10:43

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{10}\\ \\2A=1-\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-...-\left(\dfrac{1}{2}\right)^9\\ 2A-A=\left[1-\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-...-\left(\dfrac{1}{2}\right)^9\right]-\left[\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{10}\right]\\ A=1-\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^{10}\)

Bình luận (1)
TH
29 tháng 10 2017 lúc 14:09

Ta có:

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{10}\)

\(\Rightarrow\dfrac{1}{2}-A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{10}\)

\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-A\right)=\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{11}\)

\(\Rightarrow\left(\dfrac{1}{2}-A\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-A\right)=\left[\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{10}\right]-\left[\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{11}\right]\)

\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-A\right)=\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^{11}\)

\(\Rightarrow\dfrac{1}{2}-A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{10}\)

\(\Rightarrow A=\left(\dfrac{1}{2}\right)^{10}\)

\(\left(\dfrac{1}{2}\right)^{10}\) > 0 nên A > 0

Vậy, A > 0

Bình luận (5)

Các câu hỏi tương tự
MV
Xem chi tiết
VD
Xem chi tiết
VD
Xem chi tiết
NH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
QN
Xem chi tiết
HH
Xem chi tiết