d) \(\dfrac{8^4.3^6}{2^7.65}=\dfrac{\left(2^3\right)^4.3^6}{2^7.65}=\dfrac{2^{12}.3^6}{2^7.65}=\dfrac{2^7.2^5.3^6}{2^7.65}=\dfrac{2^5.3^6}{65}=\dfrac{23328}{65}\)
c) \(\left(\dfrac{3}{5}-\dfrac{3}{4}\right).\left(\dfrac{2}{6}-\dfrac{1}{5}\right)^2=\dfrac{3.4-3.5}{4.5}.\left(\dfrac{2.5-1.6}{6.5}\right)^2\\ =\dfrac{-3}{20}.\left(\dfrac{2}{15}\right)^2=\dfrac{-3}{20}.\dfrac{4}{225}\\ =\dfrac{-3}{4.5}.\dfrac{4}{75.3}=\dfrac{-1}{375}\)
a) \(\dfrac{2^5.8^4.4^3}{16^6}=\dfrac{2^5.\left(2^3\right)^4.\left(2^2\right)^3}{\left(2^4\right)^6}=\dfrac{2^5.2^{12}.2^6}{2^{24}}=\dfrac{2^{23}}{2^{24}}=\dfrac{1}{2}\)
e) \(\dfrac{2^5.49^2}{4^3.7^3}=\dfrac{2^5.\left(7^2\right)^2}{\left(2^2\right)^3.7^3}=\dfrac{2^5.7^4}{2^6.7^3}=\dfrac{2^5.7^3.7}{2^5.2.7^3}=\dfrac{7}{2}\)