Chương 2: TỔ HỢP. XÁC SUẤT

NN

tính \(1.C^1_{100}+5.C^2_{100}+9C_{100}^3+....+397C^{100}_{100}\)

NL
22 tháng 5 2021 lúc 9:16

\(S=1C_{100}^1+\left(4+1\right)C_{100}^2+\left(4.2+1\right)C_{100}^3+...+\left(4.99+1\right)C_{100}^{100}\)

\(=C_{100}^1+C_{100}^2+...+C_{100}^{100}+4\left(1.C_{100}^2+2.C_{100}^3+...+99C_{100}^{100}\right)\)

\(=2^{100}-1+4S_1\)

Xét khai triển:

\(\left(1+x\right)^{100}=C_{100}^0+xC_{100}^1+x^2C_{100}^2+...+x^{100}C_{100}^{100}\)

\(\Rightarrow\dfrac{\left(1+x\right)^{100}}{x}=\dfrac{C_{100}^0}{x}+C_{100}^1+xC_{100}^2+...+x^{99}C_{100}^{100}\)

Đạo hàm 2 vế:

\(\dfrac{100x\left(1+x\right)^{99}-\left(1+x\right)^{100}}{x^2}=-\dfrac{C_{100}^0}{x^2}+C_{100}^2+2xC_{100}^3+...+99x^{98}C_{100}^{100}\)

Thay \(x=1\)

\(\Rightarrow100.2^{99}-2^{100}=-1+S_1\)

\(\Rightarrow S_1=49.2^{100}+1\)

\(\Rightarrow S=2^{100}-1+4\left(49.2^{100}+1\right)=...\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
LL
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết