Ôn tập toán 7

TH

Tìm x,y,z bt :

a,xy=\(\dfrac{3}{7}\);yz=\(\dfrac{3}{2}\);zx=\(\dfrac{3}{7}\)

b,xy=9z;yz=4x;zx=16y

NT
25 tháng 6 2017 lúc 15:04

a, Sửa đề \(xy=\dfrac{2}{7}\)

Ta có: \(xy=\dfrac{2}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\Rightarrow xy.yz.zx=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)

\(\Rightarrow\left(xyz\right)^2=\dfrac{9}{49}\Leftrightarrow\left(xyz\right)^2=\left(\pm\dfrac{3}{7}\right)^2\Rightarrow\left[{}\begin{matrix}xyz=\dfrac{3}{7}\\xyz=-\dfrac{3}{7}\end{matrix}\right.\)

+) Xét trường hợp \(xyz=\dfrac{3}{7}\)\(\Rightarrow\dfrac{2}{7}.z=\dfrac{3}{7}\Rightarrow z=\dfrac{3}{7}:\dfrac{2}{7}=\dfrac{3}{2}\)

\(\Rightarrow y.\dfrac{3}{2}=\dfrac{3}{2}\Rightarrow y=1\Rightarrow x.1=\dfrac{2}{7}\Rightarrow x=\dfrac{2}{7}\)

+) Xét trường hợp \(xyz=-\dfrac{3}{7}\Rightarrow\dfrac{2}{7}.z=-\dfrac{3}{7}\Rightarrow z=-\dfrac{3}{2}\)

\(\Rightarrow y.\dfrac{-3}{2}=\dfrac{3}{2}\Rightarrow y=-1\Rightarrow x.\left(-1\right)=\dfrac{2}{7}\Rightarrow x=-\dfrac{2}{7}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=1\\z=\dfrac{2}{7}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1\\z=-\dfrac{2}{7}\end{matrix}\right.\)

b, Ta có: \(xy=9z;yz=4x;zx=16y\Rightarrow\dfrac{xy}{z}=9;\dfrac{yz}{x}=4;\dfrac{zx}{y}=16\)

\(\Rightarrow\dfrac{xy}{z}.\dfrac{yz}{x}.\dfrac{zx}{y}=9.4.16\Rightarrow xyz=576\)

\(\Rightarrow xy=\dfrac{576}{z};yz=\dfrac{576}{x};zx=\dfrac{576}{y}\)

\(\Rightarrow\dfrac{576}{z}=9z\Rightarrow9z^2=576\Rightarrow z^2=64\Rightarrow z=\pm8\)

\(\dfrac{576}{x}=4x\Rightarrow4x^2=576\Rightarrow x^2=144\Rightarrow x=\pm12\)

\(\dfrac{576}{y}=16y\Rightarrow16y^2=576\Rightarrow y^2=36\Rightarrow y=\pm6\)

Vì xyz=156 => x;y;z dương hoặc trong x;y;z có 2 số âm

\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\\z=8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=12\\y=-6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=-6\\z=8\end{matrix}\right.\)

Vậy...

Bình luận (1)
MP
25 tháng 6 2017 lúc 14:44

a) \(xy=\dfrac{3}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\)

từ \(xy=\dfrac{3}{7}vàzx=\dfrac{3}{7}\) \(\Rightarrow\) \(z=y\)

\(yz=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y^2=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y=\sqrt{\dfrac{3}{4}}\) \(\Leftrightarrow\) \(y=z=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow\) \(xy=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x.\dfrac{\sqrt{3}}{2}=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x=\dfrac{3}{7}:\dfrac{\sqrt{3}}{2}\) = \(\dfrac{3}{7}.\dfrac{2}{\sqrt{3}}=\dfrac{6}{7\sqrt{3}}\) = \(\dfrac{2\sqrt{3}}{7}\)

vậy \(x=\dfrac{2\sqrt{3}}{7}\) ; \(y=\dfrac{\sqrt{3}}{2}\) ; \(z=\dfrac{\sqrt{3}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TN
Xem chi tiết
VT
Xem chi tiết
EC
Xem chi tiết
DT
Xem chi tiết
XT
Xem chi tiết
NH
Xem chi tiết
QS
Xem chi tiết
VH
Xem chi tiết