a, \(2xy+x+y=83\Rightarrow4xy+2x+2y+1=167\)
\(\Rightarrow2x.\left(2y+1\right)+\left(2y+1\right)=167\Rightarrow\left(2x+1\right)\left(2y+1\right)=167\)
Do \(x,y\in N\)* \(\Rightarrow2x+1\ge3;2y+1\ge3\)
Mà \(Ư\left(167\right)=\left\{1;-1;167;-167\right\}\)
Do đó, không có giá trị của \(x,y\in N\)* để 2xy+x+y=83
Vậy không có giá trị của x,y thỏa mãn yêu cầu bài toán.
b, \(9xy+3x+3y=51\Rightarrow\left(9xy+3x\right)+\left(3y+1\right)=52\)
\(\Rightarrow3x.\left(3y+1\right)+\left(3y+1\right)=52\Rightarrow\left(3x+1\right)\left(3y+1\right)=52\)
Vì \(x,y\in N\)* \(\Rightarrow3x+1\ge4;3y+1\ge4\)
Mà \(Ư\left(52\right)=\left\{\pm2;\pm4;\pm13;\pm26;\pm1;\pm52\right\}\)
\(\Rightarrow\left(3x+1\right)\left(3y+1\right)=52=4.13\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1=4\\3y+1=13\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1=13\\3y+1=4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x=3\\3y=12\end{matrix}\right.\\\left\{{}\begin{matrix}3x=12\\3y=3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)