Chương I - Căn bậc hai. Căn bậc ba

TT

tìm x

a,\(\sqrt{3+\sqrt{x}}=4\)

b,\(\sqrt{x+3}=\sqrt{1-5x}\)

c,\(\sqrt{x^2+6x+9}=3x-1\)

NT
23 tháng 9 2021 lúc 20:27

a: Ta có: \(\sqrt{\sqrt{x}+3}=4\)

\(\Leftrightarrow\sqrt{x}+3=16\)

\(\Leftrightarrow\sqrt{x}=13\)

hay x=169

b: Ta có: \(\sqrt{x+3}=\sqrt{1-5x}\)

\(\Leftrightarrow x+3=1-5x\)

\(\Leftrightarrow6x=-2\)

hay \(x=-\dfrac{1}{3}\left(nhận\right)\)

Bình luận (0)
LL
23 tháng 9 2021 lúc 20:30

a) \(\sqrt{3+\sqrt{x}}=4\left(đk:x\ge0\right)\)

\(\Leftrightarrow3+\sqrt{x}=16\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\left(tm\right)\)

b) \(\sqrt{x+3}=\sqrt{1-5x}\left(đk:\dfrac{1}{5}\ge x\ge-3\right)\)

\(\Leftrightarrow x+3=1-5x\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\left(ktm\right)\)

Vậy \(S=\varnothing\)

c) \(\sqrt{x^2+6x+9}=3x-1\left(đk:x\ge\dfrac{1}{3}\right)\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

\(\Leftrightarrow x+3=3x-1\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)

Bình luận (2)
HP
23 tháng 9 2021 lúc 20:35

a. \(\sqrt{3+\sqrt{x}}=4\)      ĐKXĐ: \(x\ge0\)

<=> 3 + \(\sqrt{x}\) = 42

<=> \(3+\sqrt{x}=16\)

<=> \(\sqrt{x}=16-3\)

<=> \(\sqrt{x}=13\)

<=> x = 132

<=> x = 169 (TM)

b. \(\sqrt{x+3}=\sqrt{1-5x}\)           ĐKXĐ: \(x\ge\dfrac{1}{5}\)

<=> \(\left(\sqrt{x+3}\right)^2=\left(\sqrt{1-5x}\right)^2\)

<=> \(|x+3|=|1-5x|\)

<=> \(\left[{}\begin{matrix}x+3=1-5x\\-\left(x+3\right)=-\left(1-5x\right)\\x+3=-\left(1-5x\right)\\-\left(x+3\right)=1-5x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-1}{3}\\x=1\\x=1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

c. \(\sqrt{x^2+6x+9}=3x-1\)

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(|x+3|=3x-1\)

<=> \(\left[{}\begin{matrix}x+3=-\left(3x-1\right)\\x+3=3x-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x+3=-3x=1\\-2x=-4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=-2\\x=2\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
LG
Xem chi tiết
NL
Xem chi tiết
LJ
Xem chi tiết
CA
Xem chi tiết
LG
Xem chi tiết
QS
Xem chi tiết
DL
Xem chi tiết
QE
Xem chi tiết