ĐK:\(x,y,z\ge \frac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(2x+2y+2z-\sqrt{4x-1}-\sqrt{4y-1}-\sqrt{4z-1}=0\)
\(\Leftrightarrow\left(4x-1-2\sqrt{4x-1}+1\right)+\left(4y-1-2\sqrt{4y-1}+1\right)+\left(4z-1-2\sqrt{4z-1}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
Dễ thấy: \(VT\ge0\forall x,y,z\)
\("="\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\dfrac{1}{2}\)