Đại số lớp 7

NA

Tìm x, y, Z biết:

a. x(x-1/2)<0

b. |1/4-x|+|x-y+z|+|2/3+y|=0

NT
8 tháng 8 2017 lúc 20:50

a, \(x\left(x-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-\dfrac{1}{2}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-\dfrac{1}{2}>0\end{matrix}\right.\end{matrix}\right.\Rightarrow0< x< \dfrac{1}{2}\)

Vậy \(0< x< \dfrac{1}{2}\)

b, \(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|=0\)

\(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|\dfrac{1}{4}-x\right|=0\\\left|x-y+z\right|=0\\\left|\dfrac{2}{3}+y\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-11}{12}\\z=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy...

Bình luận (0)
MS
8 tháng 8 2017 lúc 22:11

Sửa đề: \(x;y;z\in Q\)

\(x\left(x-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-\dfrac{1}{2}< 0\Rightarrow x< \dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-\dfrac{1}{2}>0\Rightarrow x>\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{2}\)

\(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|=0\)

\(\left\{{}\begin{matrix}\left|\dfrac{1}{4}-x\right|\ge0\\\left|x-y+z\right|\ge0\\\left|\dfrac{2}{3}+y\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\)\(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|\dfrac{1}{4}-x\right|=0\Rightarrow x=\dfrac{1}{4}\\\left|\dfrac{2}{3}+y\right|=0\Rightarrow y=-\dfrac{2}{3}\\\left|x-y+z\right|=0\Rightarrow z=-\dfrac{11}{12}\end{matrix}\right.\)

Bình luận (0)
NT
8 tháng 8 2017 lúc 20:42

a, \(x\left(x-\dfrac{1}{2}\right)< 0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-\dfrac{1}{2}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-\dfrac{1}{2}>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\dfrac{1}{2}< x< 0\)

Vậy...

b, \(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|=0\)

\(\left|\dfrac{1}{4}-x\right|+\left|x-y+z\right|+\left|\dfrac{2}{3}+y\right|\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{4}-x=0\\x-y+z=0\\\dfrac{2}{3}+y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\z=\dfrac{-11}{12}\\y=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy...

Bình luận (1)

Các câu hỏi tương tự
BN
Xem chi tiết
TN
Xem chi tiết
BN
Xem chi tiết
QN
Xem chi tiết
DN
Xem chi tiết
NV
Xem chi tiết
MC
Xem chi tiết
QA
Xem chi tiết
NL
Xem chi tiết