Ôn tập cuối năm phần số học

KV

Tìm x để f(x) đạt gtnn và tính gtnn đó
1, f(x)=3x2-2x-7
2, f(x)=5x2+7x
Tìm x để f(x) đạt gtln và tính gtln đó
1, f(x)=-5x2+9x-2
2, f(x)=-7x2+3x

TN
25 tháng 7 2017 lúc 10:17

1,\(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{22}{3}\)

\(=2\left(x-\dfrac{1}{3}\right)^2-\dfrac{22}{3}\ge-\dfrac{22}{3}\forall x\)

Vậy GTNN của biểu thức là \(-\dfrac{22}{3}\) khi \(x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)

\(b,f\left(x\right)=5x^2+7x=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}\right)-\dfrac{49}{20}\)\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Vậy Giá trị nhỏ nhất của biểu thức là \(-\dfrac{49}{20}\) khi \(x+\dfrac{7}{10}=0\Rightarrow x=-\dfrac{7}{10}\)

\(c,f\left(x\right)=-5x^2+9x-2=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}\right)+\dfrac{41}{20}\)\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{41}{20}\) khi \(x-\dfrac{9}{10}=0\Rightarrow x=\dfrac{9}{10}\)

\(d,f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{9}{28}\) khi \(x-\dfrac{3}{14}=0\Rightarrow x=\dfrac{3}{14}\)

Bình luận (0)
HN
25 tháng 7 2017 lúc 10:27

1/ \(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x-7\right)\)

\(=3\left(x^2-\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{64}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\)

Ta có: \(3\left(x-\dfrac{1}{3}\right)^2\ge0\forall x\Rightarrow3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\ge-\dfrac{64}{3}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{1}{3}=0\) hay \(x=\dfrac{1}{3}\)

Vậy MINf(x) = \(-\dfrac{64}{3}\) khi x = \(\dfrac{1}{3}\).

2/ \(f\left(x\right)=5x^2+7x\)

\(=5\left(x^2+\dfrac{7}{5}x\right)=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}-\dfrac{49}{100}\right)\)

\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\)

Ta có: \(5\left(x+\dfrac{7}{10}\right)^2\ge0\forall x\Rightarrow5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Dấu "=" xảy ra khi \(x+\dfrac{7}{10}=0\) hay \(x=-\dfrac{7}{10}\)

Vậy MINf(x) = \(-\dfrac{49}{20}\) khi x = \(-\dfrac{7}{10}\).

1/ \(f\left(x\right)=-5x^2+9x-2\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{2}{5}\right)\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}-\dfrac{41}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\)

Ta có: \(-5\left(x-\dfrac{9}{10}\right)^2\le0\forall x\Rightarrow-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{9}{10}=0\) hay \(x=\dfrac{9}{10}\)

Vậy MAXf(x) = \(\dfrac{41}{20}\) khi x = \(\dfrac{9}{10}\)

2/ \(f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)

\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\)

Ta có: \(-7\left(x-\dfrac{3}{14}\right)^2\le0\forall x\Rightarrow-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{3}{14}=0\) hay x = \(\dfrac{3}{14}\)

Vậy MAXf(x) = \(\dfrac{9}{28}\) khi x = \(\dfrac{3}{14}\).

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
VC
Xem chi tiết
KV
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
PD
Xem chi tiết
CM
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết