Giúp mình với ạ!!! ai trả lời nhanh mình tick luôn nhé
a, \(\frac{2x^2-x}{x^2+x+1}+\frac{x^3-2x^2}{x^2+x+1}+\frac{x-1}{x^2+x+1}\)
b, \(\frac{2x+y}{x\left(y^2-x\right)}-\frac{2x-y}{x\left(y^2-x\right)}\)
c, \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5-2}{x^2-4}\)
d, \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
e, \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
f, \(\frac{3}{x^2+2xy+y^2}+\frac{4}{2xy-x^2-y^2}+\frac{5}{x^2-y^2}\)
a)\(\frac{1-3x}{2}\)-\(\frac{x+3}{2}\) b)\(\frac{2\left(x+y\right)\left(x-y\right)}{x}\)-\(\frac{-2y^2}{x}\)
c)\(\frac{3x+1}{x+y}\)-\(\frac{2x-3}{x+y}\)
d)\(\frac{xy}{2x-y}\)-\(\frac{x^2-1}{y-2x}\)
e)\(\frac{4x-1}{3x^2y}\)-\(\frac{7x-1}{3x^2y}\)
giúp em với
tìm điều kiện xác định của phân thức
a) \(\frac{x^2-4}{x^2-1}\) c) \(\frac{x^2-5x+6}{x^2-1}\) e) \(\frac{2x+1}{x^2-5x+6}\)
b) \(\frac{5x-3}{2x^2-x}\) d) \(\frac{2}{\left(x+1\right)\left(x-3\right)}\)
giúp mình với các bạn :((
\(\frac{2x^2+5}{x^2-x+1}-\frac{x^3+4}{x^2-x+1}\)
a) \(\frac{1}{^{x^2}-4}=\frac{a}{x-2}+\frac{b}{x+2}\)
b)\(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)
Xác định a,b,c
\(\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{1-x}+1\)
a). Chứng minh: \(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{x\left(x+1\right)}\)
b). Tính nhẩm tổng sau:
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\)
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
1) thực hiện phép tính
a) \(\dfrac{x-3}{4x+4}-\dfrac{x-1}{6x-30}\)
b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
c) \(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2-3xy}\)
d) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}-\dfrac{x+3}{1-x^2}\)
e) \(\dfrac{3\left(x-2\right)}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{1-x^2}\)