Violympic toán 8

H24

tìm x biết:
1) x2 - 10x = -25
2) 5x (x-1) = x-1
3) 2 (x+5) - x2 - 5x = 0
4) x2 - 2x -3 = 0
5) 2x2 + 5x - 3 = 0

NL
14 tháng 2 2020 lúc 12:27

Câu 1 :

a, Ta có : \(x^2-10x=-25\)

=> \(x^2-10x+25=0\)

=> \(\left(x-5\right)^2=0\)

=> \(x-5=0\)

=> \(x=5\)

Vậy phương trình có nghiệm là x = 5 .

b, Ta có : \(5x\left(x-1\right)=x-1\)

=> \(5x\left(x-1\right)-x+1=0\)

=> \(5x\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(5x-1\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)

c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)

=> \(2\left(x+5\right)-x\left(x+5\right)=0\)

=> \(\left(2-x\right)\left(x+5\right)=0\)

=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 2, x = -5 .

d, Ta có : \(x^2-2x-3=0\)

=> \(x^2-3x+x-3=0\)

=> \(x\left(x+1\right)-3\left(x+1\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 3, x = -1 .

e, Ta có : \(2x^2+5x-3=0\)

=> \(2x^2+6x-x-3=0\)

=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)

=> \(\left(x+3\right)\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)

Bình luận (0)
 Khách vãng lai đã xóa
HY
14 tháng 2 2020 lúc 12:37

\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
HY
14 tháng 2 2020 lúc 12:51

\(3.2\left(x+5\right)-x^2-5x=0\\\Leftrightarrow 2x+10-x^2-5x=0\\ \Leftrightarrow-x^2-3x+10=0\\\Leftrightarrow x^2+3x-10=0\\\Leftrightarrow x^2-2x+5x-10=0\\\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\\\Leftrightarrow \left(x+5\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-5;2\right\}\)

\(4.x^2-2x-3=0\\\Leftrightarrow x^2+x-3x-3=0\\\Leftrightarrow \left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;3\right\}\)

\(5.2x^2+5x-3=0\\ \Leftrightarrow2\left(x^2+\frac{5}{2}x-\frac{3}{2}\right)=0\\ \Leftrightarrow x^2+\frac{5}{2}x-\frac{3}{2}=0\\ \Leftrightarrow x^2-\frac{1}{2}x+3x-\frac{3}{2}=0\\\Leftrightarrow x\left(x-\frac{1}{2}\right)+3\left(x-\frac{1}{2}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x-\frac{1}{2}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x-\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-3;\frac{1}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PP
Xem chi tiết
QD
Xem chi tiết
HG
Xem chi tiết
NC
Xem chi tiết
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
NN
Xem chi tiết