Chương 1: MỆNH ĐỀ, TẬP HỢP

LP

Tìm tất cả giá trị của tham số m để :x2+4x+\(\sqrt{21-x^2-4x}+2m-1=0\) có 4 nghiệm pb

NL
3 tháng 12 2018 lúc 22:23

ĐKXĐ:...

Ta có \(21-x^2-4x=25-\left(x+2\right)^2\le25\)

Đặt \(\sqrt{21-x^2-4x}=t\Rightarrow0\le t\le5\) pt trở thành:

\(21-t^2+t+2m-1=0\Leftrightarrow f\left(t\right)=t^2-t-2m-20=0\) (1)

Để pt đã cho có 4 nghiệm phân biệt thì (1) có 2 nghiệm phân biệt thỏa mãn \(0\le t_1< t_2< 5\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\f\left(0\right)\ge0\\f\left(5\right)>0\\0< \dfrac{S}{2}< 5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1+4\left(2m+20\right)>0\\-2m-20\ge0\\25-5-2m-20>0\\0< \dfrac{1}{2}< 5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-81}{8}\\m\le-10\\m< 0\\0< \dfrac{1}{2}< 5\end{matrix}\right.\)

\(\Rightarrow\dfrac{-81}{8}< m< 0\)

Bình luận (0)
HT
10 tháng 1 2019 lúc 22:51

Ta có 21−x2−4x=25−(x+2)2≤2521−x2−4x=25−(x+2)2≤25

Đặt √21−x2−4x=t⇒0≤t≤521−x2−4x=t⇒0≤t≤5 pt trở thành:

21−t2+t+2m−1=0⇔f(t)=t2−t−2m−20=021−t2+t+2m−1=0⇔f(t)=t2−t−2m−20=0 (1)

Để pt đã cho có 4 nghiệm phân biệt thì (1) có 2 nghiệm phân biệt thỏa mãn 0≤t1<t2<50≤t1<t2<5

⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩Δ>0f(0)≥0f(5)>00<S2<5⇒{Δ>0f(0)≥0f(5)>00<S2<5 ⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩1+4(2m+20)>0−2m−20≥025−5−2m−20>00<12<5⇒{1+4(2m+20)>0−2m−20≥025−5−2m−20>00<12<5 ⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩m>−818m≤−10m<00<12<5⇒{m>−818m≤−10m<00<12<5

⇒−818<m<0

Bình luận (3)

Các câu hỏi tương tự
NN
Xem chi tiết
AN
Xem chi tiết
DA
Xem chi tiết
HD
Xem chi tiết
DS
Xem chi tiết
DA
Xem chi tiết
VD
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết