Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hai biểu thức:
A = \(\dfrac{x-7}{\sqrt{x}}\) và B = \(\dfrac{3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{2x-3\sqrt{x}+6}{x-4}\), với \(x>0,x\ne4\)
Biết B sau khi thu gọn được: B = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên
Cho n là số nguyên dương (n> hoặc = 2). CMR
\(\sqrt{n}< \dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
Cho n là số nguyên dương (n> hoặc =2) .CmR:
\(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
Chứng minh với mọi số nguyên dương n ta có: \(\dfrac{1}{2\sqrt{2}+1}+\dfrac{1}{3\sqrt{3}+2\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\dfrac{1}{\sqrt{n+1}}\)
1) Cho a ∈ N thỏa mãn \(\sqrt{a}\)∈ Q. CM: \(\sqrt{a}\)∈ N
2) Cho x, y ∈ N thỏa mãn \(\sqrt{x}+\sqrt{y}\) ∈ N
CM: \(\sqrt{x},\sqrt{y}\) ∈ N
3) Tìm x, y nguyên dương thỏa mãn \(\sqrt{x}+\sqrt{y}=\sqrt{x+y}+2\)
4) Cho n là số nguyên dương thỏa mãn \(2+2\sqrt{1+12n^2}\) là số tự nhiên.
CM: \(2+2\sqrt{1+12n^2}\)là số chính phương
CMR: Với mọi số nguyên dương n
\(A=\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Tìm tất cả số chính phương để \(M=\dfrac{x\sqrt{x}-8}{x-4\sqrt{x}+4}\) nhận giá trị là số nguyên
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên