Lời giải:
$y=x^3+3x^2-4$
$\Rightarrow y'=3x^2+6x$
$\Rightarrow y'(x_0)=3.1^2+6.1=9$
$y_0=1^3+3.1^2-4=0$
PTTT của đths tại điểm có hoành độ $x_0=1$ là:
$y=y'(x_0)(x-x_0)+y_0=9(x-1)+0=9x-9$
Lời giải:
$y=x^3+3x^2-4$
$\Rightarrow y'=3x^2+6x$
$\Rightarrow y'(x_0)=3.1^2+6.1=9$
$y_0=1^3+3.1^2-4=0$
PTTT của đths tại điểm có hoành độ $x_0=1$ là:
$y=y'(x_0)(x-x_0)+y_0=9(x-1)+0=9x-9$
Cho hàm số \(y=x^3-3x^2+2x\) có đồ thị (C)
a. Viết phương trình tiếp tuyến (C) tại điểm có hoành độ bằng -1
b. Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 6
c. Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.
Cho hàm số \(y=\frac{mx+1}{x+m-2}\), có đồ thị là \(\left(C_m\right)\)
a. Viết phương trình tiếp tuyến của \(\left(C_1\right)\) , biết tiếp tuyến đi qua điểm P(3;1)
b. Viết phương trình tiếp tuyến của \(\left(C_1\right)\) , biết tiếp tuyến đi qua điểm A(2;-1)
c. Tìm m để tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng y = x +1
Viết phương trình tiếp tuyến của đồ thị hàm số (C) : \(y=x^3-6x^2+9x-2\)
a) Tại điểm M(1;2)
b) Tại giao điểm của đồ thị (C) với trục Oy
c) Tại điểm có hoành độ bằng -1
d) Tại điểm có tung độ bằng -2
e) Tại điểm N biết điểm N cùng 2 điểm cực trị của (C) tạo thành tam giác có diện tích bằng 6
Tìm những điểm trên đồ thị (C) của hàm số \(y=x+1+\frac{1}{x-1}\) có hoành độ lớn hơn 1 sao cho tiếp tuyến tại đó tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất.
Cho hàm số \(y=x^3-\left(m-1\right)x^2+\left(3m+1\right)x+m-2\) . Tìm m để tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 đi qua điểm A(2; -1)
Tìm m để tiếp tuyến của đồ thị hàm số \(y=\frac{1}{3}x^3-\frac{m}{2}x^2+\frac{1}{3}\) tại điểm có hoành độ bằng -1 song song với đường thẳng \(5x-y=0\)
Cho hàm số \(y=x^4-8x^2+m+1\left(C_m\right)\)
Chứng minh tiếp tuyến của đồ thị \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=1\) luôn cắt đồ thị \(\left(C_m\right)\) tại 3 điểm phân biệt. Tìm tọa độ các giao điểm
Cho \(y=mx^4+\left(3m+\frac{1}{24}\right)x^2+2;\left(C_m\right)\). Gọi A và B lần lượt là các điểm có hoành độ bằng -1 và 2. Tìm m để các tiếp tuyến của \(\left(C_m\right)\) tại A và B vuông góc với nhau.
Cho hàm số \(y=x^3-3x^2+2\) có đồ thị (C).
Gọi M, N là hai điểm phân biệt trên (C) sao cho 2 tiếp tuyến tại M, N song song với nhau và đường thẳng MN cắt trục hoành, trục tung lần lượt tại A, B khác O sao cho \(AB=\sqrt{10}\).
Viết phương trình hai tiếp tuyến đó.
Cho hàm số \(y=x^3-3x^2+2\left(1\right)\)
Gọi M là điểm thuộc đồ thị (C) có hoành độ bằng -1. Tìm m để tiếp tuyến với (C) tại M song song với đường thẳng d : \(y=\left(m^2+5\right)x+3m+1\)