Bài 3: Một số phương trình lượng giác thường gặp

TN

Tìm nghiệm của phương trình sau trong đoạn [0;2π]
5(sinx+\(\frac{cos3x+sin3x}{1+sin2x}\))=cos2x+3

NT
29 tháng 9 2020 lúc 17:17

hihiĐề thiếu bạn nhé!

\(5(sinx+\frac{cos3x+sin3x}{1+2sin2x})=cos2x+3\) (*)

ĐKXĐ: 1 + 2sin2x \(\ne0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ne-\frac{\pi}{12}+k\pi\\x\ne\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Biến đổi riêng biểu thức: \(\frac{cos3x+sin3x}{1+2sin2x}\)

= \(\frac{\left(4cos^3x-3cosx\right)+\left(3sinx-4sin^3x\right)}{1+2sin2x}\)

\(=\frac{4\left(cos^3x-sin^3x\right)+3\left(sinx-cosx\right)}{1+2sin2x}\)

\(=\frac{4\left(cosx-sinx\right)\left(cos^2x+sinx.cosx+sin^2x\right)-3\left(cosx-sinx\right)}{1+2sin2x}\)

= \(\frac{4\left(cosx-sinx\right)\left(1+sinx.cosx\right)-3\left(cosx-sinx\right)}{1+2sin2x}\)

= \(\frac{\left(cosx-sinx\right)\left(4+2sin2x-3\right)}{1+2sin2x}\)

= cosx - sinx

Khi đó:

(*) \(\Leftrightarrow\) 5(sinx + cosx - sinx) - cos2x - 3 = 0

\(\Leftrightarrow5cosx+1-2cos^2x-3=0\)

\(\Leftrightarrow2cos^2x-5cosx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=2\left(-1\le cosx\le1\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\frac{\pi}{3}+k2\pi\)

Với x \(\in\left[0;2\pi\right]\Leftrightarrow\left[{}\begin{matrix}0\le\frac{\pi}{3}+k2\pi\le2\pi\\0\le-\frac{\pi}{3}+k2\pi\le2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\frac{1}{6}\le k\le\frac{5}{6}\\\frac{1}{6}\le k\le\frac{7}{6}\end{matrix}\right.\)

k \(\in Z\Rightarrow\left[{}\begin{matrix}k=0\\k=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}\\x=\frac{5\pi}{3}\end{matrix}\right.\)

Nghiệm của pt (*) thuộc đoạn [0;\(2\pi\)] là:

S = \(\left\{\frac{\pi}{3};\frac{5\pi}{3}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NO
Xem chi tiết
NN
Xem chi tiết
JE
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
SK
Xem chi tiết
MN
Xem chi tiết
LN
Xem chi tiết