Ôn tập toán 7

ES

Tìm nghiệm của các đa thức sau:

C(x) = (2x-3).(5x+7)

D(x) = (15x5+4x2-8)-(15x5-x-8)

E(x) = (5x7-8x2)-(4x7+4x4)-(x7+4)

PA
7 tháng 7 2016 lúc 19:09

a.

\(\left(2x-3\right)\times\left(5x+7\right)=0\)

TH1:

\(2x-3=0\)

\(2x=3\)

\(x=\frac{3}{2}\)

TH2:

\(5x+7=0\)

\(5x=-7\)

\(x=-\frac{7}{5}\)

Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)

b.

\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(15x^5+4x^2-8-15x^5+x+8=0\)

\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)

\(x\left(4x-1\right)=0\)

TH1:

\(x=0\)

TH2:

\(4x-1=0\)

\(4x=1\)

\(x=\frac{1}{4}\)

Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)

c.

\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)

\(5x^7-8x^2-4x^7-16-x^7-4=0\)

\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)

\(-8x^2-12=0\)

\(-8x^2=12\)

\(x^2=-\frac{12}{8}\)

mà \(x^2\ge0\) với mọi x

=> \(E\left(x\right)\) vô nghiệm

Bình luận (0)
NT
7 tháng 7 2016 lúc 19:13

\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)

Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)

\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)

\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)

Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)

\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)

\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)

\(\Leftrightarrow-8x^2-4x^4-4=0\)

\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)

\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\) 

\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)

Vậy E(x) vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
VT
Xem chi tiết
QS
Xem chi tiết
DL
Xem chi tiết
TH
Xem chi tiết
VT
Xem chi tiết
NM
Xem chi tiết