Ôn tập phương trình bậc hai một ẩn

H24

tìm m để pt: x2 - 2x - (m - 1)(m - 3) = 0 có 2 nghiệm x1, xsao cho A = (x1 + 1).x2 đạt GTLN

AH
7 tháng 3 2021 lúc 22:20

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(m-1)(m-3)\geq 0\Leftrightarrow (m-2)^2\geq 0\Leftrightarrow m\in\mathbb{R}$

Ta có:

$x^2-2x-(m-1)(m-3)=0$

$\Leftrightarrow [x-(m-1)][x+(m-3)]=0$

$\Rightarrow (x_1,x_2)=(m-1,3-m)$ và hoán vị

Nếu $x_1=m-1; x_2=3-m$ thì: $A=(x_1+1)x_2=m(3-m)=3m-m^2=\frac{9}{4}-(m-\frac{3}{2})^2\leq \frac{9}{4}$

Vậy $A_{\max}=\frac{9}{4}$ khi $m=\frac{3}{2}$

Nếu $x_1=3-m; x_2=m-1$ thì:

$A=(4-m)(m-1)=5m-4-m^2=\frac{9}{4}-(m-\frac{5}{2})^2\leq \frac{9}{4}$

Vậy $A_{\max}=\frac{9}{4}$ khi $m=\frac{5}{2}$

Vậy tóm lại $m=\frac{3}{2}$ hoặc $m=\frac{5}{2}$ thì $A_{\max}$

 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
DH
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
NL
Xem chi tiết