Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

TT

tìm m để pt sau có nghiệm:

\(\sqrt[4]{x^2+1}-\sqrt{x}=m\)

NL
8 tháng 8 2021 lúc 15:44

Xét hàm:

\(f\left(x\right)=\sqrt[4]{x^2+1}-\sqrt[]{x}\) với \(x\ge0\)

\(f'\left(x\right)=\dfrac{x}{2\sqrt[4]{\left(x^2+1\right)^3}}-\dfrac{1}{2\sqrt[]{x}}=\dfrac{x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}}{2\sqrt[4]{x^2\left(x^2+1\right)^3}}\)

Ta có: \(\sqrt[4]{\left(x^2+1\right)^3}>\sqrt[4]{\left(x^2+0\right)^3}=x\sqrt[]{x}\Rightarrow x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}< 0\) ; \(\forall x>0\)

\(\Rightarrow\) Hàm nghịch biến trên R \(\Rightarrow f\left(x\right)\le f\left(0\right)=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[4]{x^2+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\left(\sqrt[4]{x^2+1}+x\right)\left(\sqrt[]{x^2+1}+x^2\right)}=0\)

\(\Rightarrow f\left(x\right)>0\) ; \(\forall x>0\)

\(\Rightarrow0< f\left(x\right)\le1\Rightarrow\) phương trình có nghiệm khi \(0< m\le1\)

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
ZN
Xem chi tiết
PT
Xem chi tiết
NA
Xem chi tiết