Bài 1: Hàm số y = ax^2 (a khác 0)

HT

Tìm m để phương trình: \(mx^2-\left(m-4\right)x+2m=0\) có 2 nghiệm x1;x2 thỏa mãn:\(2\left(x_1^2+x_2^2\right)-5x_1x_2=0\)

 

DH
2 tháng 3 2021 lúc 9:48

Ta có: \(\Delta=\left(m-4\right)^2-4m.2m=m^2-8m+16-8m^2=-7m^2-8m+16\)

Để phương trình có nghiệm thì \(\Delta>0\Rightarrow\dfrac{-4-8\sqrt{2}}{7}< x< \dfrac{-4+8\sqrt{2}}{7}\)

Áp dụng định lý Vi-et ta có: 

\(x_1+x_2=\dfrac{\left(m-4\right)}{m};x_1.x_2=2\) (1)

Mặt khác ta lại có: \(2\left(x_1^2+x_2^2\right)-5x_1x_2=0\\ \Rightarrow2\left(x_1+x_2\right)^2-7x_1x_2=0\)(2)

Thay (1) vào (2) ta được 

\(2\left(\dfrac{m-4}{m}\right)^2-7.2=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{4}{1-\sqrt{7}}\\m=\dfrac{4}{1+\sqrt{7}}\end{matrix}\right.\) (Loại) 

Do đó không có giá trị m thỏa mãn 

 

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LL
Xem chi tiết
HT
Xem chi tiết
AD
Xem chi tiết
NC
Xem chi tiết
AD
Xem chi tiết
LP
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết