Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm m để 2 phương trình sau tương đương: PT(1): \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
PT(2): \(x^2-\left(3-2m\right)x-6m=0\)
Cho 2 phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với phương trình nào của m thì 2 phương trình đã cho tương đương
Cho hai phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với giá trị nào của m thì 2 phương trình đã cho tương đương
Tìm m để phương trình sau có nghiệm âm: \(\frac{m\left(x+4\right)-5\left(m-1\right)}{x+1}=2\)
Tìm m để 2 phương trình sau tương đương: PT(1): \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\)
PT(2): \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\)
Cho \(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\). Tìm tích của tất cả nghiệm trong phương trình đã cho.
Tìm m để 2 phương trình sau tương đương: PT(1): \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\)
PT(2): \(\dfrac{x^2-\left(2-m\right)x-2m=0}{x-1}\)
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
1) Tìm nghiệm nguyên của phương trình : xy+y = x3 +x2 +7
2) Giải phương trình : \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{2.2011}{2012}\)