Violympic toán 8

JL

1) Tìm nghiệm nguyên của phương trình : xy+y = x3 +x2 +7

2) Giải phương trình : \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{2.2011}{2012}\)

NL
9 tháng 12 2018 lúc 13:07

1/

\(y\left(x+1\right)-x^2\left(x+1\right)=7\Leftrightarrow\left(x+1\right)\left(y-x^2\right)=7\)

TH1: \(\left\{{}\begin{matrix}x+1=1\\y-x^2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=7\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+1=7\\y-x^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=37\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=-1\\y-x^2=-7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=-7\\y-x^2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=63\end{matrix}\right.\)

2/

\(\left(1+\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right)...\left(1+\dfrac{1}{\left(x+1-1\right)\left(x+1+1\right)}\right)=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{\left(x+1\right)^2}{x\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{2.3.4...\left(x+1\right)}{3.4.5...\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2\left(x+1\right)}{\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow2012\left(x+1\right)=2011\left(x+2\right)\)

\(\Leftrightarrow x=2010\)

Bình luận (0)

Các câu hỏi tương tự
FA
Xem chi tiết
NN
Xem chi tiết
TB
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết