Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

KY

tìm m để phương trình \(4\sqrt{x^2-4x+5}=x^2-4x+2m-1\) có 4 nghiệm phân biệt

NL
30 tháng 12 2020 lúc 22:04

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow-\dfrac{1}{2}t^2+2t+3=m\) (1)

Pt đã cho có 4 nghiệm pb khi \(\left(1\right)\) có 2 nghiệm pb thỏa mãn \(t>1\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+3\) với \(t>1\)

\(-\dfrac{b}{2a}=2>1\) ; \(f\left(1\right)=\dfrac{9}{2}\) ; \(f\left(2\right)=5\)

\(\Rightarrow\) (1) có 2 nghiệm pb thỏa mãn \(t>1\) khi và chỉ khi \(\dfrac{9}{2}< m< 5\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
LT
Xem chi tiết
DP
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
GT
Xem chi tiết