Hàm số xác định khi :
3x-m-1 ≥ 0
⇔ 3x ≥ m+1
⇔ x ≥ \(\frac{m+1}{3}\)
Hàm số xác định trên tập (1; +∞) khi
\(\frac{m+1}{3}\) ≤ 1
⇔ m ≤ 4
m ≤ 2 nha bạn
Hàm số xác định khi :
3x-m-1 ≥ 0
⇔ 3x ≥ m+1
⇔ x ≥ \(\frac{m+1}{3}\)
Hàm số xác định trên tập (1; +∞) khi
\(\frac{m+1}{3}\) ≤ 1
⇔ m ≤ 4
m ≤ 2 nha bạn
Tìm tập xác định của hàm số: \(y=f\left(x\right)=\left\{{}\begin{matrix}\sqrt{-3x+8}\left(x< 2\right)\\\sqrt{x+7}\left(x\ge2\right)\end{matrix}\right.\)
Tìm m để hàm số \(y=\frac{3x+5}{x^2+3x+m-1}\) có tập xác định là D = R
Tìm m để hàm số \(y=x^2+2\sqrt{3x-2m+1}\) có tập xác định là D = ngoặc vuông -1; \(+\infty\) )
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
Xét sự biến thiên của hàm số sau:
1, \(y=4-3x\)
2, \(y=x^2+4x-5\)
3, \(y=\dfrac{x}{x-1}trên\left(-\infty;1\right)\)
4, \(y=\dfrac{2}{x-2}trên\left(-\infty;2\right)vàtrên\left(2;+\infty\right)\)
Hi guys, please help me :))))
I need it now !!!!
Tìm Tập xác định của các hàm số sau:
\(a.y=\dfrac{x-2}{\left|x\right|+4}+\sqrt{x-x^2}\\ b.y=\dfrac{\left|x\right|}{\left|x-3\right|+\left|x+3\right|}\\ c.y=\dfrac{x+1}{\left|x\right|-1}+\sqrt{x^2-\left|x\right|}\)
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
Cho hàm số \(y=\frac{x+1}{x^2-2\left(m+1\right)x+m^2+2m}\). Tập xác định của m để hàm số xác định trên [0;1) là \(T=\left(-\infty;a\right)\cup[b;c)\cup[d;+\infty)\). Tính P=a+b+c+d
Tìm a để hàm số xác định trên tập đã chỉ ra:
a, \(y=\dfrac{3x+1}{x^2-2ax+4}\) xác định trên R
b, \(y=\sqrt{x-a}+\sqrt{2x-a-1}\) xác định trên \(\left(0;+\infty\right)\)