Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

TD

Tìm Tập xác định của các hàm số sau:

 \(a.y=\dfrac{x-2}{\left|x\right|+4}+\sqrt{x-x^2}\\ b.y=\dfrac{\left|x\right|}{\left|x-3\right|+\left|x+3\right|}\\ c.y=\dfrac{x+1}{\left|x\right|-1}+\sqrt{x^2-\left|x\right|}\)

KH
10 tháng 7 2021 lúc 9:19

Trình bày xấu, bạn thông cảm!undefined

Bình luận (1)
H24
10 tháng 7 2021 lúc 9:25

\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)

TXĐ : \(D=\left[0;1\right]\)

b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)

Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)

Nên hàm số xác định với mọi x

Tập xác định \(D=R\)

c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)

TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)

 

Bình luận (1)

Các câu hỏi tương tự
TD
Xem chi tiết
PP
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
LT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết