Bài 2: Cực trị hàm số

TT

tìm m để hàm số \(y=\dfrac{x^2+\left(1-m\right)x-2}{x+m}\) đạt cực tiểu tại x=0

NL
27 tháng 7 2021 lúc 22:39

\(y'=\dfrac{x^2+2mx-m^2+m+2}{\left(x-m\right)^2}\)

Hàm đạt cực trị tại \(x=0\Rightarrow y'=0\) có nghiệm \(x=0\)

\(\Rightarrow\dfrac{-m^2+m+2}{m^2}=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

- Với \(m=-1\Rightarrow y=\dfrac{x^2+2x-2}{x-1}\Rightarrow y'=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

\(\Rightarrow y''=\dfrac{2}{\left(x-2\right)^3}< 0\) tại \(x=0\Rightarrow x=0\) là cực đại (ko thỏa mãn)

- Với \(m=2\Rightarrow y=\dfrac{x^2-x-2}{x+2}\Rightarrow y'=\dfrac{x^2+4x}{\left(x+2\right)^2}\)

\(\Rightarrow y''=\dfrac{8}{\left(x+2\right)^3}>0\) tại \(x=0\Rightarrow\) thỏa mãn

Vậy \(m=2\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
NB
Xem chi tiết
MT
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
QT
Xem chi tiết
ND
Xem chi tiết
XT
Xem chi tiết
DD
Xem chi tiết