Violympic toán 9

AP

tìm m để các pt bậc 2 ẩn x sau: \(x^2-\left(m+1\right)x+2=0\) có 2 nghiệm x1, x2 t/m:

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\) =14

NL
22 tháng 4 2020 lúc 23:26

\(\Delta=\left(m+1\right)^2-8\ge0\Rightarrow\left[{}\begin{matrix}m\ge-1+2\sqrt{2}\\m\le-1-2\sqrt{2}\end{matrix}\right.\)

Phương trình ko có nghiệm \(x=0\) nên biểu thức đề bài luôn xác định

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2\end{matrix}\right.\)

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=14\)

\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=16\)

\(\Leftrightarrow\left(\frac{x_1^2+x_2^2}{x_1x_2}\right)^2=16\Leftrightarrow\left(\frac{x_1^2+x_2^2}{2}\right)^2=16\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{2}=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(m-1\right)^2=12\Leftrightarrow\left[{}\begin{matrix}m=1+2\sqrt{3}\\m=1-2\sqrt{3}\left(l\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
AM
Xem chi tiết
AP
Xem chi tiết
NL
Xem chi tiết
AM
Xem chi tiết
NH
Xem chi tiết
AM
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
AM
Xem chi tiết