Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

CM

Tìm m để bất phương trình \(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\) nghiệm đúng với mọi \(x\in\left[-2;4\right]\)

HP
2 tháng 2 2021 lúc 11:57

\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)

\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)

Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)

\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)

Yêu cầu bài toán thỏa mãn khi 

\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)

\(\Leftrightarrow m\ge10\)

Vậy \(m\ge10\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AD
Xem chi tiết
RT
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
HH
Xem chi tiết
HT
Xem chi tiết
SD
Xem chi tiết
NT
Xem chi tiết