Bài 3: Nhị thức Niu-tơn

TN

Tìm hệ số chứa x5 trong khai triển đa thức P(x)= (2x+1)+ (2x+1)2+ (2x+1)3+...+(2x+1)20.

mọi người ai biết giải giúp e với ạ.

MP
18 tháng 8 2018 lúc 20:12

ta có : \(P\left(x\right)=\sum\limits^{20}_{k=1}\left(2x+1\right)^k=\sum\limits^{20}_{k=1}C_k^p\left(2x\right)^{k-p}\left(1\right)^k\)

để có : \(x^5\Rightarrow k-p=5\)

\(\Rightarrow\) hệ số của \(P\left(x\right)\) trong khai triển là : \(\sum\limits^{20}_{k=1}C^p_k\left(2\right)^{k-p}=C^0_52^5+C^1_62^5+C^2_72^5+...+C^{15}_{20}2^5\)

\(=32\left(C^0_5+C^1_6+C^2_7+...+C^{15}_{20}\right)=32.54264=1736448\)

vậy hệ số của \(x^5\) trong khai triển đa thức \(P\left(x\right)\)\(1736448\)

Bình luận (0)

Các câu hỏi tương tự
QH
Xem chi tiết
KR
Xem chi tiết
AQ
Xem chi tiết
SB
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
LN
Xem chi tiết
BL
Xem chi tiết