\(P=\frac{x^2+y^2}{x^2+2xy+y^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)^2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(P=\frac{x^2+y^2}{x^2+2xy+y^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)^2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y\)
Tìm GTNN của: A=\(\dfrac{x^2+y^2}{x^2+2xy+y^2}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
cho x,y >0 thỏa mãn x+y«4.tìm GTNN
P=2/(x^2+y^2)+35/xy+2xy
cho x,y thỏa mãn : x^2+2xy+8(x+y)+2y^2+12=0. Tìm GTNN và GTLN của S=x+y=1
Cho ba số x, y z thoả mãn 2xy+2x-5z=0. Tìm GTNN của A= x^2+2y^2+2xy+8/5y+z+2
a, Tìm GTNN của biểu thức:
A=x2+2y2+2xy+2x-4y+2017
b, Cho x,y>0 Cmr \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+3\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Cho x,y thỏa mãn : x^2+2xy+6x+6y+2y^2+8=0. Tìm GTLN, GTNN của biểu thức : M=2019(x+y)+2020
Cho x , y , z > 0 và x + y + z ≤ 3 .
Tìm GTNN của C = \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\)
tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y